Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add filters

Language
Document Type
Year range
1.
medrxiv; 2023.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2023.10.25.23297503

ABSTRACT

Ongoing severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) transmission and COVID-19 disease severity is influenced by immunity acquired by natural exposure and/or vaccination, whereby most vaccines are formulated on the Ancestral strain. However, population-level immunity is complicated by the emergence of variants of concern (VOCs), such as Omicron that is the dominant variant currently in circulation. Antibody Fc-dependent effector functions are being increasingly recognised as important mediators in immunity, especially against VOCs. However, induction of these functions in populations with diverse infection and/or vaccination histories, remains poorly defined. Here, we evaluated Fc-dependent functional antibodies following vaccination with two widely used vaccines: AstraZeneca (AZ; ChAdOx1-S) and Sinovac (SV). We quantified Fc{gamma}R-binding and C1q-fixing antibodies against Ancestral and variant spike (S) proteins in Brazilian adults vaccinated with AZ or SV (n=222), some of which were previously exposed to SARS-CoV-2. AZ induced greater Fc{gamma}R-binding responses to Ancestral S than the SV vaccine. Previously exposed individuals had significantly greater vaccine-induced responses compared to their naive counterparts, with notably high C1q-fixation levels, irrespective of vaccine type. Fc{gamma}R-binding was highest among AZ vaccinated individuals with a prior exposure, and these responses were well retained against the Omicron S protein. Overall, these findings contribute to our understanding of vaccine-induced immunity and its effectiveness against evolving variants.


Subject(s)
Coronavirus Infections , Severe Acute Respiratory Syndrome , COVID-19
2.
biorxiv; 2023.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2023.09.15.557929

ABSTRACT

Background: Booster vaccinations are recommended to improve protection against severe disease from SARS-CoV-2 infection. With primary vaccinations involving various adenoviral vector and mRNA-based formulations, it remains unclear if these differentially affect the immune response to booster doses. We here examined the effects of homologous (mRNA/mRNA) and heterologous (adenoviral vector/mRNA) vaccination on antibody and memory B cell (Bmem) responses against ancestral and Omicron subvariants. Methods: Healthy adults who received primary BNT162b2 (mRNA) (n=18) or ChAdOx1 (vector) (n=25) vaccination were sampled 1-month and 6-months after their 2nd and 3rd dose (homologous or heterologous) vaccination. Recombinant spike receptor-binding domain (RBD) proteins from ancestral, Omicron BA.2 and BA.5 variants were produced for ELISA-based serology, and tetramerized for immunophenotyping of RBD-specific Bmem. Results: Dose 3 boosters significantly increased ancestral RBD-specific plasma IgG and Bmem in both cohorts. Up to 80% of ancestral RBD-specific Bmem expressed IgG1+. IgG4+ Bmem were detectable after primary mRNA vaccination, and expanded significantly to 5-20% after dose 3, whereas heterologous boosting did not elicit IgG4+ Bmem. Recognition of Omicron BA.2 and BA.5 by ancestral RBD-specific plasma IgG increased from 20% to 60% after the 3rd dose in both cohorts. Reactivity of ancestral RBD-specific Bmem to Omicron BA.2 and BA.5 increased following a homologous booster from 40% to 60%, but not after a heterologous booster. Conclusion: A 3rd mRNA dose generates similarly robust serological and Bmem responses in homologous and heterologous vaccination groups. The expansion of IgG4+ Bmem after mRNA priming might result from the unique vaccine formulation or dosing schedule affecting the Bmem response duration and antibody maturation.


Subject(s)
COVID-19
3.
biorxiv; 2023.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2023.02.28.530547

ABSTRACT

Following the COVID-19 pandemic caused by SARS-CoV-2, novel vaccines have successfully reduced severe disease and death. Despite eliciting lower antibody responses, adenoviral vector vaccines are nearly as effective as mRNA vaccines. Therefore, protection against severe disease may be mediated by immune memory cells. We here evaluated plasma antibody and memory B cells (Bmem) targeting the Spike receptor binding domain (RBD) elicited by the adenoviral vector vaccine ChAdOx1 (AstraZeneca), their capacity to bind Omicron subvariants, and compared this to the response elicited by the mRNA vaccine BNT162b2 (Pfizer-BioNTech). Whole blood was sampled from 31 healthy adults pre-vaccination, and four weeks after dose one and dose two of ChAdOx1. Neutralizing antibodies (NAb) against SARS-CoV-2 were quantified at each timepoint. Recombinant RBDs of the Wuhan-Hu-1 (WH1), Delta, BA.2, and BA.5 variants were produced for ELISA-based quantification of plasma IgG and incorporated separately into fluorescent tetramers for flow cytometric identification of RBD-specific Bmem. NAb and RBD-specific IgG levels were over eight times lower following ChAdOx1 vaccination than BNT162b2. In ChAdOx1-vaccinated individuals, median plasma IgG recognition of BA.2 and BA.5 as a proportion of WH1-specific IgG was 26% and 17%, respectively. All donors generated resting RBD-specific Bmem, which were boosted after the second dose of ChAdOx1, and were similar in number to those produced by BNT162b2. The second dose of ChAdOx1 boosted Bmem that recognized VoC, and 37% and 39% of WH1-specific Bmem recognized BA.2 and BA.5, respectively. These data uncover mechanisms by which ChAdOx1 elicits immune memory to confer effective protection against severe COVID-19.


Subject(s)
COVID-19 , Death
4.
biorxiv; 2022.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2022.11.08.515567

ABSTRACT

The spike (S) glycoprotein of SARS CoV-2 is the target of neutralizing antibodies (NAbs) that are crucial for vaccine effectiveness. The S1 subunit binds ACE2 while the S2 subunit mediates virus-cell membrane fusion. S2 is a class I fusion glycoprotein and contains a central coiled coil that acts as a scaffold for the conformational changes associated with fusion function. The coiled coil of S2 is unusual in that the 3-4 repeat of inward-facing positions are mostly occupied by polar residues that mediate few inter-helical contacts in the prefusion trimer. We examined how insertion of bulkier hydrophobic residues (Val, Leu, Ile, Phe) to fill a cavity formed by Ala1016 and Ala1020 that form part of the 3-4 repeat affects the stability and antigenicity of S trimers. Substitution of Ala1016 with bulkier hydrophobic residues in the context of a prefusion-stabilized S trimer, S2P-FHA, was associated with increased thermal stability. The trimer stabilizing effects of filling the Ala1016/Ala1020 cavity was linked to improved S glycoprotein membrane fusion function. When assessed as immunogens, two thermostable S2P-FHA mutants derived from the ancestral isolate, A1016L (16L) and A1016V/A1020I (VI) elicited very high titers of neutralizing antibodies to ancestral and Delta-derived viruses (1/2,700-1/5,110), while neutralization titer was somewhat reduced with Omicron BA.1 (1/210-1,1744). The antigens elicited antibody specificities that could compete with ACE2-Fc for binding to the receptor-binding motif (RBM) and NAbs directed to key neutralization epitopes within the receptor-binding domain (RBD), N-terminal domain (NTD) and stem region of S2. The VI mutation enabled the production of intrinsically stable Omicron BA.1 and Omicron BA.4/5 S ectodomain trimers in the absence of an external trimerization motif (T4 foldon). The VI mutation represents a method for producing an intrinsically stable trimeric S ectodomain glycoprotein vaccine in the absence of a foreign trimerization tag.


Subject(s)
Hypoalphalipoproteinemias
5.
biorxiv; 2022.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2022.08.03.502703

ABSTRACT

Background: SARS-CoV-2 vaccination with BNT162b2 (Pfizer BioNTech) has been shown to be 95% effective. Double-dose vaccination generates high levels of spike-specific antibodies, memory B cells (Bmem) and T cells. However, variants of concern (VoC) with mutations in the spike Receptor Binding Domain (RBD) can evade antibody responses. Booster vaccinations improve antibody recognition of VoC, but it is unclear if this is due to higher total antibodies or their capacity to bind VoC. We here addressed the capacity of surface Ig on single Wuhan-specific Bmem after first and second dose BNT162b2 vaccination to recognize variant RBD. Methods: Samples were collected from 30 healthy COVID-19 naive individuals pre-BNT162b2 vaccination, 3 weeks post-dose 1 and 4-weeks post-dose 2. Plasma antibodies and Bmem were evaluated using recombinant RBD proteins of the Wuhan, Gamma and Delta strains. Results: All individuals generated a robust antibody response to BNT162b2 vaccination with all participants producing neutralizing antibodies following dose 2. IgM+ and IgG+ RBD-specific Bmem were generated after one vaccine dose, and those expressing IgG1 increased in absolute number after dose 2. The majority of RBD-specific Bmem bound the Gamma and/or Delta variants, and this proportion significantly increased after the second dose. Conclusion: The second dose of BNT162b2 increases the number of circulating Ig-class switched RBD-specific Bmem. Importantly, the second dose of vaccination is required for a high frequency of RBD-specific Bmem to recognize Gamma and Delta variants. This suggests that dose 2 not only increases the number of RBD-specific Bmem but also the affinity of the Bmem to overcome the point mutations in VoC.


Subject(s)
COVID-19
6.
medrxiv; 2021.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2021.06.28.21259671

ABSTRACT

Current tests for SARS-CoV-2 antibodies (IgG, IgM, IgA) cannot differentiate recent and past infections. We describe a point of care, lateral flow assay for SARS-CoV-2 dIgA based on the highly selective binding of dIgA to a chimeric form of secretory component (CSC), that distinguishes dIgA from monomeric IgA. Detection of specific dIgA uses a complex of biotinylated SARS-CoV-2 receptor binding domain and streptavidin-colloidal gold. SARS-CoV-2-specific dIgA was measured both in 112 cross-sectional samples and a longitudinal panel of 362 plasma samples from 45 patients with PCR-confirmed SARS-CoV-2 infection, and 193 discrete pre-COVID-19 or PCR-negative patient samples. The assay demonstrated 100% sensitivity from 11 days post-symptom onset, and a specificity of 98.2%. With an estimated half-life of 6.3 days, dIgA provides a unique biomarker for the detection of recent SARS-CoV-2 infections with potential to enhance diagnosis and management of COVID-19 at point-of-care.


Subject(s)
COVID-19
7.
medrxiv; 2020.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2020.11.17.20233544

ABSTRACT

BackgroundLasting immunity to SARS-CoV-2 following infection is questioned because serum antibodies decline in convalescence. However, functional immunity is mediated by long-lived memory T and B (Bmem) cells. ObjectiveTo determine the longevity and immunophenotype of SARS-CoV-2-specific Bmem cells in COVID-19 patients. MethodsRecombinant spike receptor binding domain (RBD) and nucleocapsid protein (NCP) were produced for ELISA-based serology, and biotinylated for fluorescent tetramer generation to identify SARS-CoV-2-specific Bmem cells by flow cytometry with a panel of 13 mAbs. 36 blood samples were obtained from 25 COVID-19 patients (11 paired) between 4-242 days post-symptom onset for detection of neutralizing antibodies, IgG serology and flow cytometry. ResultsThe recombinant RBD and NCP were specifically recognized by serum IgG in all patients and reactivity declined >20 days post-symptom onset. All patients had detectable RBD- and NCP-specific Bmem cells at 8.23-267.6 cells/ml of blood (0.004-0.13% of B cells) regardless of sampling time. RBD- and NCP-specific Bmem cells predominantly expressed IgM or IgG1, with the latter formed slightly later than the former. RBD-specific IgG+ Bmem were predominantly CD27+, and numbers significantly correlated with circulating follicular helper T cell numbers. ConclusionRBD- and NCP-specific Bmem cells persisted for 8 months, indicating that the decline in serum antibodies after 1 month does not indicate waning of immunity but a contraction of the immune response. Flowcytometric detection of SARS-CoV-2-specific Bmem cells enables detection of long-term functional immunity following infection or vaccination for COVID-19.


Subject(s)
COVID-19
SELECTION OF CITATIONS
SEARCH DETAIL